A new Reinforcement Learning-based Memetic Particle Swarm Optimizer

نویسندگان

  • Hussein Samma
  • Chee Peng Lim
  • Junita Mohamad-Saleh
چکیده

Developing an effective memetic algorithm that integrates the Particle Swarm Optimization (PSO) algorithm and a local search method is a difficult task. The challenging issues include when the local search method should be called, the frequency of calling the local search method, as well as which particle should undergo the local search operations. Motivated by this challenge, we introduce a new Reinforcement Learning-based Memetic Particle Swarm Optimization (RLMPSO) model. Each particle is subject to five operations under the control of the Reinforcement Learning (RL) algorithm, i.e. exploration, convergence, emetic algorithm article Swarm Optimization einforcement learning ocal search high-jump, low-jump, and fine-tuning. These operations are executed by the particle according to the action generated by the RL algorithm. The proposed RLMPSO model is evaluated using four uni-modal and multi-modal benchmark problems, six composite benchmark problems, five shifted and rotated benchmark problems, as well as two benchmark application problems. The experimental results show that RLMPSO is useful, and it outperforms a number of state-of-the-art PSO-based algorithms. Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical particle swarm optimizer with latin sampling based memetic algorithm for numerical optimization

Memetic algorithms, one type of algorithms inspired by nature, have been successfully applied to solve numerous optimization problems in diverse fields. In this paper, we propose a new memetic computing model, using a hierarchical particle swarm optimizer (HPSO) and latin hypercube sampling (LHS) method. In the bottom layer of hierarchical PSO, several swarms evolve in parallel to avoid being t...

متن کامل

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

Optimization of UWB Receiver using the Improved Memetic Algorithm in WBAN

A novel method for Ultra Wideband (UWB) receiver design in Wireless Body Area Network (WBAN) is proposed in this study. The method is based on the Improved Memetic-Algorithm (IMA), with the output Signal-toNoise Ratio of the receiver (SNRout) is optimized. By relating the target SNRout to the parameters of main components, including Low Noise Amplifier (LNA), mixer and base-band Low Pass Filter...

متن کامل

Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization

Optimization algorithms are proposed to tackle different complex problems in different areas. In this paper, we firstly put forward a new memetic evolutionary algorithm, named Monkey King Evolutionary (MKE) Algorithm, for global optimization. Then we make a deep analysis of three update schemes for the proposed algorithm. Finally we give an application of this algorithm to solve least gasoline ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2016